Evolución: Teoría y evidencia
Darwin no fue el primero en proponer una teoría de la evolución, pero fue el primero que describió un mecanismo válido por el cual podría ocurrir. Su teoría difería de teorías previas en que él imaginaba a la evolución como un proceso doble, que dependía: 1) de la existencia de variaciones heredables entre los organismos, y 2) del proceso de selección natural por el cual algunos organismos, en virtud de sus variaciones heredables, dejaban más progenie que otros.
En la década de 1930, el trabajo de muchos científicos se plasmó en la Teoría Sintética de la evolución, que combina los principios de la genética mendeliana con la teoría darwiniana. La Teoría Sintética ha proporcionado -y continúa proporcionando- el fundamento del trabajo de los biólogos en sus intentos por desentrañar los detalles de la historia de la vida.
La teoría de Darwin
Charles Darwin no fue el primero en proponer que la diversidad de los organismos es el resultado de procesos históricos, -pero el reconocimiento por la teoría de la evolución le pertenece por dos razones. En primer lugar su "larga argumentación"' -como fue caracterizado El Origen de las Especies- dejó poca duda acerca de que la evolución había ocurrido en realidad y, de esta manera, marcó un punto de viraje en la ciencia de la biología. La segunda razón, que está íntimamente vinculada con la primera, es que Darwin percibió el mecanismo general en virtud del cual se produce la evolución.
El concepto original de Darwin y de Wallace acerca de cómo ocurre la evolución todavía sigue proporcionando el marco básico para nuestra comprensión del proceso. Ese concepto se funda en cinco premisas:
Los organismos engendran organismos similares; en otras palabras, hay estabilidad en el proceso de la reproducción.
En la mayoría de las especies , el número de individuos que sobreviven y se reproducen en cada generación es pequeño en comparación con el número total producido inicialmente.
En cualquier población dada ocurren variaciones aleatorias entre los organismos individuales, algunas de las cuales son hereditarias, es decir, que no son producidas por el ambiente.
La interacción entre estas variaciones hereditarias, surgidas al azar, y las características del ambiente determinan en grado significativo cuáles son los individuos que sobrevivirán y se reproducirán y cuáles no. Algunas variaciones permiten que los individuos produzcan más descendencia que otros. Darwin llamó a estas características variaciones "favorables" y propuso que las variaciones favorables heredadas tienden a hacerse cada vez más comunes de una generación a otra. Este es el proceso al que Darwin llamó selección natural .
Dado un tiempo suficiente, la selección natural lleva a la acumulación de cambios que provocan diferencias entre grupos de organismos.
Evidencias del proceso evolutivo
Podemos clasificar estas evidencias distinguiendo las cinco principales fuentes de las que provienen: la observación directa, el estudio de la biogeografía, el registro fósil, el estudio de las homologías y la imperfección de la adaptación.
...Darwin encontró numerosos ejemplos en los que comprobó que la evolución, muy lejos de operar como un delicado ingeniero que diseña y construye a cada especie a partir de un plan preconcebido y de materiales óptimos, se parecería más a un zapatero remendón que pone parches sobre diseños preexistentes. Las adaptaciones proveen evidencia no sólo de que en las poblaciones ocurren cambios graduales a lo largo del tiempo en respuesta a fuerzas selectivas del ambiente, sino también de que muchas de ellas distan de ser perfectas como consecuencia de las restricciones dadas por la historia evolutiva del grupo. La teoría de la evolución en la actualidad
Desde la época de Darwin se ha acumulado un gran número de evidencias adicionales que sustentan la realidad de la evolución que ponen de manifiesto que todos los organismos vivos que existen hoy sobre la Tierra se han establecido a partir de formas más antiguas, en el curso de la larga historia del planeta.
Una de las principales debilidades de la teoría de la evolución, según fuera formulada por Darwin, era la ausencia de un mecanismo válido para explicar la herencia.
El desarrollo posterior de la genética permitió dar respuesta a tres cuestiones que Darwin nunca pudo resolver: 1) ¿de qué manera se transmiten las características heredadas de una generación a la siguiente?; 2) ¿por qué las características heredadas no se "mezclan", sino que pueden desaparecer y luego reaparecer en generaciones posteriores y 3) ¿de qué manera se originan las variaciones sobre las cuales actúa la selección natural?
La combinación de la teoría de la evolución de Darwin con los principios de la genética mendeliana se conoce como la síntesis neodarwiniana o la Teoría Sintética de la evolución.
Las bases genéticas de la evolución
La genética de poblaciones es una síntesis de la teoría darwiniana de la evolución con los principios de la genética mendeliana. Para el genetista de poblaciones, una población es un grupo de organismos que se cruzan, definidos y unidos por su reservorio génico. La evolución es el resultado de los cambios acumulados en la composición del reservorio génico.
La amplitud de la variabilidad genética en una población es un determinante principal de su capacidad para el cambio evolutivo. Puede mostrarse por experimentos de selección artificial que las poblaciones naturales albergan un amplio espectro de variaciones genéticas. La amplitud de la variabilidad genética puede ser cuantificada comparando las estructuras de las proteínas y, más recientemente, mediante la secuenciación de las moléculas de DNA .
El equilibrio de Hardy-Weinberg describe el estado estacionario de las frecuencias alélicas y genotípicas que existiría en una población ideal en la cual se cumplieran cinco condiciones. El equilibrio de Hardy-Weinberg demuestra que la recombinación genética que resulta de la meiosis y de la fecundación no cambia por sí misma la frecuencia de los alelos en el reservorio génico. El principal factor de cambio en la composición del reservorio génico es la selección natural, aunque existen otros procesos involucrados. Estos procesos incluyen la mutación, el flujo de genes, la deriva genética y el apareamiento no aleatorio o preferencial.
La reproducción sexual es el factor más importante que promueve la variabilidad genética en las poblaciones.
Los biólogos evolutivos proponen que los genes estructurales existentes en la actualidad tuvieron sus comienzos en muy pocos protogenes. Estos protogenes luego se habrían duplicado y modificado por la acumulación de mutaciones durante los últimos 4.000 millones de años.
La amplitud de la variabilidad
El parecido evidente que existe entre los progenitores y sus descendientes se explica por la notable precisión con la cual el DNA se replica y se transmite de una célula a sus células hijas durante la división celular.
El DNA de las células de cualquier individuo es, excepto en el caso de mutaciones ocasionales, una réplica del DNA que el individuo recibió de sus progenitores. De hecho, los mecanismos de replicación y transmisión del DNA no sólo nos vinculan con nuestros antecesores inmediatos, sino que también expresan la relación que existe entre nosotros y todos los demás seres vivos.
Aunque la fidelidad de la duplicación es esencial para la supervivencia de los organismos individuales que componen una población, para que ocurra evolución deben producirse variaciones entre los individuos. Estas variaciones constituyen la materia prima sobre la cual operan las fuerzas evolutivas y son las que hacen posible que poblaciones sometidas a condiciones diferentes sean diferentes.
Así, la variabilidad es una característica de la población; no existe un tipo ideal sino una gama de variantes que va cambiando en el tiempo y en el espacio.
La genética de poblaciones moderna ha indagado de varias maneras diferentes la amplitud de esta variabilidad y cómo estas variaciones se mantienen en los reservorios génicos.
La selección artificial, proceso considerado como una analogía directa de la selección natural , mostró que existe una enorme cantidad de variabilidad oculta en el reservorio génico , y que esta variabilidad latente puede expresarse bajo las presiones de la selección.
Recientemente, comenzó a ser posible realizar un nivel de análisis que los genetistas evolutivos estaban esperando con ansiedad: el estudio de la variabilidad a nivel último, es decir, a nivel del DNA.
Un estado estacionario: el equilibrio de Hardy-Weinberg
A principios del siglo XX, los genetistas comenzaban a comprender las leyes de la herencia y el origen de nueva variabilidad a partir de la mutación. Sin embargo, dado que la evolución es un proceso que se desarrolla a través del tiempo, era necesario indagar cómo se comportaba la variabilidad presente en una población a través de las generaciones. Si en una población existen, por ejemplo, dos alelos para una misma característica que están presentes en una determinada proporción y en ciertas combinaciones genotípicas, ¿se modificará esta proporción en la siguiente generación, luego del proceso de reproducción sexual?
Hardy y Weinberg mostraron que las combinaciones que resultan del proceso de apareamiento y reproducción que ocurre en cada generación en los organismos diploides no involucran un cambio en la composición general del reservorio génico.
Para demostrar esto, propusieron un modelo teórico que permite examinar el comportamiento de los alelos en una población ideal en la cual rigen cinco condiciones: 1) No ocurren mutaciones ; 2) no hay desplazamiento neto de individuos con sus genes hacia el interior de la población (inmigración) o hacia afuera (emigración); 3) la población es lo suficientemente grande como para que se apliquen las leyes de la probabilidad; o sea, es altamente improbable que el azar, por sí mismo, pueda alterar la frecuencia de los alelos; 4) el apareamiento entre individuos es al azar y 5) no hay diferencia en el éxito reproductivo de los genotipos considerados, es decir, que el llevar diferentes combinaciones alélicas no confiere ventaja a sus portadores. La progenie de todos los apareamientos posibles tiene la misma probabilidad de sobrevivir y reproducirse en la generación siguiente.
Si se considera un único gen con sólo dos alelos, A y a, se puede demostrar matemáticamente que si se cumplen las cinco condiciones mencionadas previamente, entonces las frecuencias, o proporciones relativas, de los alelos A y a en la población no cambiarán de una generación a otra. Más aun, la frecuencia de los tres genotipos posibles de estos alelos -los genotipos AA, Aa y aa- no cambiarán de una generación a la siguiente. El reservorio génico estará en un estado estacionario -en un equilibrio- con respecto a estos alelos. Así, la ecuación de Hardy-Weinberg establece que en una población ideal, en la cual se cumplan las cinco condiciones planteadas por el modelo, ni las frecuencias alélicas ni las frecuencias genotípicas cambian de una generación a otra.
Si bien las frecuencias de los alelos en las poblaciones naturales siempre están cambiando, sin la ecuación de Hardy-Weinberg no sabríamos cómo detectar el cambio, determinar su magnitud y dirección, o describir las fuerzas que lo determinan. Sin embargo, si podemos identificar el genotipo de los individuos de una población, podremos estimar las frecuencias génicas y comparar estos datos con el modelo de Hardy-Weinberg. Si hacemos esto durante varias generaciones, podemos representar con exactitud en un gráfico los cambios que están ocurriendo en el reservorio génico y, en función de ello, investigar las causas.
Los agentes del cambio
De acuerdo con la teoría evolutiva moderna, la selección natural es la fuerza principal que explica el cambio en las frecuencias de los alelos. Existen, sin embargo, otros agentes que pueden cambiar las frecuencias de los alelos en una población. Entre estos agentes pueden distinguirse principalmente la mutación, el flujo de genes , la deriva genética y el apareamiento no aleatorio.
Las mutaciones ocurren al azar, o por casualidad. Esto significa que aunque la tasa de mutaciones puede ser influida por factores ambientales, las consecuencias de las mutaciones son independientes de las características del ambiente y, por lo tanto, de su potencialidad para constituirse en un beneficio o en un perjuicio para el organismo y su progenie.
El flujo de genes -la entrada o salida de los alelos del reservorio génico - pueden introducir nuevos alelos o alterar las proporciones de los alelos ya presentes y, frecuentemente, este proceso tiene el efecto de contrarrestar a la selección natural. La interrupción de flujo génico por alguna barrera geográfica es un hecho muy importante en el proceso de formación de especies nuevas.
El equilibrio de Hardy-Weinberg tiene validez sólo si la población es grande. Este requisito es necesario porque el equilibrio depende de las leyes de la probabilidad.
La deriva genética es un proceso que ocurre generalmente en poblaciones pequeñas En las poblaciones pequeñas, ciertos alelos pueden aumentar o disminuir su frecuencia y, a veces, incluso desaparecer, como resultado del azar.
Los genetistas de poblaciones y otros biólogos evolutivos generalmente concuerdan en que la deriva genética desempeña un papel significativo en la determinación del curso evolutivo de las poblaciones. Sin embargo, su importancia relativa, comparada con la de la selección natural, es un asunto que se debate actualmente. Hay, por lo menos, dos situaciones en las cuales se ha demostrado su importancia. Una de ellas es el efecto fundador.
El efecto fundador puede manifestarse cuando una nueva población es fundada a partir de una pequeña muestra de una población original (por ejemplo la colonización de una isla no habitada anteriormente, a partir de unos pocos individuos de una población continental), las frecuencias alélicas en el grupo fundador pueden ser diferentes de las presentes en la población de donde proceden. Como consecuencia de ello, el reservorio génico de la nueva población tendrá una composición diferente al reservorio de la población originaria.
Otro caso de deriva genética aparece cuando el número de miembros de una población se reduce drásticamente por un acontecimiento que tiene poca o ninguna relación con las presiones habituales de la selección natural. A este fenómeno se lo denomina cuello de botella .
El apareamiento no aleatorio o preferencial provoca cambios en las proporciones de los genotipos y puede o no afectar las frecuencias alélicas. Una forma de apareamiento no aleatorio, particularmente importante en las plantas, es la autopolinización. En los animales, el apareamiento no aleatorio depende, a menudo, del comportamiento. Este apareamiento no aleatorio es un componente importante de selección natural en algunas especies. El apareamiento no aleatorio puede provocar cambios en las frecuencias genotípicas sin producir necesariamente ningún cambio en la frecuencia de los alelos en cuestión. Preservación y promoción de la variabilidad
Sin duda, el mecanismo más importante por el cual se promueve la variabilidad de la progenie en los organismos eucarióticos es la reproducción sexual y lo hace de tres modos:
1) por distribución independiente de los cromosomas en la meiosis
2) por crossing-over con recombinación genética en la meiosis y
3) por la combinación de los dos genomas parentales en la fecundación.
En cada generación, los alelos son distribuidos en combinaciones nuevas. En contraste con esto, los organismos que se reproducen sólo asexualmente mediante procesos en los que intervienen la mitosis y la citocinesis, pero no la meiosis -excepto en el caso de que haya ocurrido una mutación durante el proceso de duplicación- el organismo nuevo será exactamente igual a su único progenitor. Con el tiempo se formarán muchos clones; cada uno de los cuales podrá llevar una o más mutaciones pero, a menos que las mismas mutaciones ocurran en los mismos clones, las combinaciones potencialmente favorables nunca se acumularán en un mismo genotipo.
El origen de la variabilidad genética
Las nuevas técnicas de análisis del DNA de los cromosomas de los organismos eucarióticos ha permitido comprobar que grandes segmentos de DNA -los transposones* - tienen la capacidad para producir duplicados de sí mismos y dispersar estos duplicados en otros sitios del mismo cromosoma o de otros cromosomas. Estos genes duplicados son entonces libres para transitar su propio camino evolutivo, dejando que sus funciones sean desempeñadas por los genes parentales originales. Los genes duplicados están libres, por lo tanto, de restricciones selectivas, permitiendo que se acumulen las mutaciones .
* transposon: Una secuencia de DNA que lleva uno o más genes y es capaz de moverse de un lugar del cromosoma a otro. Los transposones simples, conocidos también como secuencias de inserción, llevan sólo los genes esenciales para la transposición; los transposones compuestos llevan genes que codifican proteínas adicionales.
quedo en selección natural
domingo, 27 de septiembre de 2009
Suscribirse a:
Enviar comentarios (Atom)
No hay comentarios:
Publicar un comentario